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Abstract

The ability to learn cause—effect relations from experience is critical for humans to behave adaptively
— to choose causes that bring about desired effects. However, traditional experiments on experience-
based learning involve events that are artificially compressed in time so that all learning occurs over
the course of minutes. These paradigms therefore exclusively rely upon working memory. In contrast,
in real-world situations we need to be able to learn cause—effect relations over days and weeks, which
necessitates long-term memory. 413 participants completed a smartphone study, which compared learn-
ing a cause—effect relation one trial per day for 24 days versus the traditional paradigm of 24 trials back-
to- back. Surprisingly, we found few differences between the short versus long timeframes. Subjects
were able to accurately detect generative and preventive causal relations, and they exhibited illusory
correlations in both the short and long timeframe tasks. These results provide initial evidence that
experience-based learning over long timeframes exhibits similar strengths and weaknesses as in short
timeframes. However, learning over long timeframes may become more impaired with more complex
tasks.
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1. Introduction

The ability to learn relations between events from experience is critical for humans to
behave adaptively. Learning relations between events allows individuals to predict future
events (e.g., predicting the likelihood of a side-effect after taking a medicine) and make
decisions to try to bring about desirable outcomes (e.g., deciding whether or not to use the
medication). There are two types of errors when learning relations between events. First, one
might falsely conclude that there is no relation between two events. For example, if a person
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stops taking a medication because they falsely judge it to be ineffective, they will miss out
on the benefits of the therapy. Another error, called illusory correlation or illusory causation,
involves falsely concluding that there is a relation between two events. This type of error is
believed to contribute to the formation of stereotypes (e.g., believing that one race is more
likely to commit crimes than another (Hamilton & Gifford, 1976) and believing in pseudo-
scientific therapies (Mature, Yarritu, & Vadillo, 2011)). The goal of the present research was
to assess whether and when people can accurately identify relations, which is crucial for
informing efforts to improve decision making.

These questions have frequently been studied using the “trial-by-trial” paradigm in
which participants observe multiple cue-outcome (or “cause—effect”) pairs. This trial-by-trial
paradigm simulates how individuals learn relations through trial and error while experiencing
a temporal stream of events. Typically, the entire learning session lasts on the order of 5-10
min (or 30-60 min for tasks with many trials). Furthermore, the participant is fully engaged in
the learning process and any distractions during the task are experimenter-induced. Originally
used in the behaviorist tradition, trial-by-trial learning is used pervasively across many fields
such as causal learning (Spellman, 1996; Waldmann, 2001), correlation detection (Jenkins
& Ward, 1965; Kao & Wasserman, 1993), reinforcement learning (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006; Delgado, Nystrom, Fissell, Noll, & Fiez, 2000), category learning
(Kruschke, 1992; Nosofsky, 1986), fear learning (LaBar, Gatenby, Gore, LeDoux, & Phelps,
1998; Schiller et al., 2010), and stereotype formation (Hamilton & Gifford, 1976; Le Pelley
et al., 2010).

However, we contend that this pervasive rapid trial-by-trial learning paradigm does not
reflect real-world learning situations, which usually involve experiencing cause—effect asso-
ciations over longer periods of time. For example, stereotypes are not learned on the order of
minutes but through experiences with in-group and out-group members over longer periods
of time. Similarly, learning about potential food allergies or the effectiveness of a medication
is based on experiences that are spaced out over days or weeks. When learning is spread out
over time and embedded in daily life, the learner is simultaneously engaged in many other
cognitive processes. Because the learner must rely on long-term memory as opposed to work-
ing memory, they may have more difficulty learning cause—effect relations and be more likely
to make mistakes in real-world situations.

Historically, because so much research on causal learning (and experience-based learning
in general) compares human learning and judgments to normative or rational computational
models, researchers have often studied learning under optimal situations in which memory
demands are minimized. In the trial-by-trial paradigm, this is accomplished by rapidly pre-
senting the trials back-to-back usually without distractions, and in some other paradigms the
data are presented in a summarized format to make it even easier to digest (e.g., Cheng, 1997;
Griffiths & Tenenbaum, 2005). Because of this emphasis on studying learning and reasoning
under optimal conditions, fairly little research has investigated learning under more real-world
learning constraints, though there are a few exceptions.

In fact, two of the foundational studies on illusory correlations investigated learning that
naturally occurred over a spaced-out timeframe. Chapman and Chapman (1969) argued
that psychotherapists inferred illusory correlations between Wheeler—Rorschach signs and
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their patients’ diagnoses, and Redelmeier and Tversky (1996) argued that arthritis patients
experience illusory correlations between the weather and their symptoms. However, both
of these assessments are flawed. Aside from the premise of diagnosing homosexuality
being highly problematic (Herek, 2010), Chapman and Chapman also did not have access
to the individual therapists’ clinical records, so they could not actually analyze learning.
Redelmeier and Tversky did not take autocorrelation into account when analyzing correla-
tions between weather and pain, which is necessary for analyzing time-series data. In sum,
there is no prior research that can really speak to the accuracy of causal learning over long
timeframes.

1.1. The role of memory in causal learning

We compared trial-by-trial learning in the standard rapid paradigm with 24 trials (short
timeframe) versus learning in which the trials were spaced out once per day for 24 days (long
timeframe). The long timeframe condition, in which one trial was experienced per day, was
intended to simulate natural processes that unfold on a daily timescale (e.g., does a medicine
that can be taken once per day influence a health outcome, does exercising on some days
influence sleep).

We investigated how well people learned about four datasets. In two datasets, there was a
real correlation between the cause and the effect, either positive or negative. In two datasets,
there was zero correlation between the cause and the effect; however, prior research has shown
that people typically infer illusory correlations for these.

None of the existing models of causal learning have memory built into the model, so they
do not make clear predictions about learning over spaced-out timeframes. We briefly discuss
these models to point toward potential predictions that they could make. Importantly, our
goal is not to confirm or disconfirm particular models, which is impossible because they do
not make clear predictions. Still, it is possible to hypothesize a range of predictions that these
models could make for long timeframes.

Rule-based theories of causal learning (Cheng, 1997; Griffiths & Tenenbaum, 2005;
Hattori & Oaksford, 2007) assume that people judge causal relationships from tallies of the
experienced events. If learning over a long timeframe causes increased interference and/or
decay, and if this leads to less accurate tallies of the experienced events, it would mean worse
judgments in the long timeframe compared to the short. For example, in studies that have
manipulated working memory load, illusory correlations become stronger and the ability to
detect true relations is impaired when working memory is taxed (Kao & Wasserman, 1993;
Shaklee & Mims, 1982). Additionally, older adults with working memory decline and people
with lower levels of working memory exhibit stronger illusory correlations compared to
younger adults and people with higher levels of working memory (Eder, Fiedler, & Hamm-
Eder, 2011; Mutter & Pliske, 1996). In sum, perhaps the current study, which stretches
learning out over time and therefore requires long-term memory instead of short-term mem-
ory, could be viewed somewhat analogously to studies that have increased working memory
load.
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If memory is worse in the long timeframe, there are a few possible predictions. For
the datasets with a true cause—effect correlation, worse learning would likely mean that
learners would have more difficulty detecting the statistical relationship in the long time-
frame compared to the short, so judgments would be closer to zero. For the illusory
correlation datasets, worse learning could play out in two ways. First, it is possible that there
will be stronger illusory correlations in the long timeframe condition similar to the studies
that manipulated working memory load (Kao & Wasserman, 1993; Shaklee & Mims, 1982).
Second, if people have a lot of difficulty learning the statistical relationship, it could lead to
judgments closer to zero, which would paradoxically produce more accurate judgments.

Alternatively, there may be few differences between the long versus short timeframe con-
ditions. In regard to the rule-based theories, it is possible that people will have fairly accurate
memories of the tallies given that they only involve a fairly simple form of learning between a
single cause and a single effect. Associative and reinforcement learning models (e.g., Rescorla
& Wagner, 1972) might also predict fairly accurate judgments, given that they do not require
memories for individual events and only require sequentially updating a cue-outcome associ-
ation.

Because the existing models do not have memory built in, they do not make clear predic-
tions for causal learning over long timeframes. Still, it is vitally important to know whether
people can accurately assess statistical relations in their own lives such as these daily pro-
cesses. As the first study of its kind, this study was designed to provide strong evidence about
the accuracy of simple causal learning over longer timeframes.

2. Materials and methods

2.1. Participants

There were 479 participants (mean age = 21 years, 96% under 30 years old). Participants
were required to own a smartphone and intend to complete the entire study. We mainly tar-
geted college students to have a similar sample to most other causal learning studies since
they frequently use smartphones. Participants were paid $30 if they successfully completed
the entire study. This study was approved as exempt through our university’s Institutional
Review Board. All participants gave informed consent. Our goal was to have around 400 par-
ticipants, 100 for each of the four datasets in the long timeframe condition. The final data
analyses included 413 participants after dropping 13 who admitted to writing down data dur-
ing the study, one who admitted to not trying during the task, 40 due to a programming error,
and 12 who skipped too many days.

2.2. Datasets and design

Participants learned the statistical relation between a binary cause (c) and a binary effect
(e) in four datasets, each with 24 randomly ordered observations (Table 1). We represent the
presence versus absence of the cause and effect with 1 and 0, respectively. We used the AP
rule (Allan, 1980) to characterize the strength of the cause—effect relations in the datasets,
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Table 1
Frequencies for datasets in current study
c=1 0 c=0

Dataset e=1 e= e=1 e=0 Pe=llc=1) Ple=1|c=0) AP Power PC
Generative 3 3 9 5 25 5 0.67
Preventive 3 9 9 3 25 5 -5 —-0.67
A-cell 10 6 5 3 .625 .625 .0 0.00
Outcome-Density 9 3 9 3 5 75 .0 0.00

Note: c represents the cause and e represents the effect.
Table 2
Example order of tasks and randomization for a single subject
Task Order Day Length Dataset Context Valence Authenticity
1 1 Short A-cell* Restaurant Positive* Authentic*
2 1 Short Preventive House Negative Novel
3 1-24 Long A-cell* Library Positive* Authentic*
4 25 Short Generative Street Positive Novel
5 25 Short Outcome density Park Negative Authentic

*A task in which the dataset, cover story valence, and cover story authenticity were matched, but the length of
the task was either short or long.

AP = P(e = 1|c = 1) — P(e = 1|c = 0), as well as Cheng’s (1997) power PC metric of causal
strength (Table 1).

In the “generative” dataset, there was a positive relation between the cause and effect,
and in the “preventive” dataset there was a negative relation. Both AP and power PC imply
moderate strength relations for the generative and preventive datasets. People typically make
roughly normative judgments for these datasets in short timeframe studies (e.g., Shaklee &
Mims, 1982).

There were two noncontingent datasets. The A-cell dataset had a high number of “A-cell”
(c =1, e =1) trials, and the “outcome density” dataset had a high probability of the effect.
Both AP and power PC imply zero relations between the cause and outcome for these two
datasets; however, people typically infer a positive relation for these datasets, which is called
an “illusory correlation” (e.g., Blanco, Matute, & Vadillo, 2013; Kao & Wasserman, 1993).

Participants completed five tasks (Table 2). They learned about one of the four datasets in
the long timeframe, and they learned about all four in the short timeframe. On day 1, they
completed Tasks 1 and 2—the short timeframe tasks for two of the four datasets. Then from
Days 1 to 24, they completed Task 3—the long timeframe condition. Finally, on Day 25, they
completed Tasks 4 and 5—the short timeframe tasks for the two datasets not experienced on
Day 1.

The long timeframe dataset matched one of the four short timeframe datasets in all ways
except for the length and the context of the cover story. Having subjects learn all four
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Table 3

Authentic causes, contexts, and effect valences for cover stories

Authentic cause Contextual image Effect: Positive valence Effect: Negative valence

Using Facebook versus Restaurant Very good mood versus Very bad mood versus
Not using Facebook Normal mood Normal mood

Eating a healthy dinner versus Friend’s house Stomach feels great versus Upset stomach versus
Not eating a healthy dinner Normal digestion Normal digestion

Using notecards to study versus Library Very good grade versus Very bad grade versus
Not using notecards to study Normal grade Normal grade

Biking to work versus Streets Very productive versus Very unproductive versus
Not biking to work Normal productivity Normal productivity

Bringing a dog versus Park Very relaxed versus Very stressed versus
Not bringing a dog on a daily walk Feeling normal Feeling normal

Note: In the “novel” condition, the cause was replaced with taking a novel vitamin (e.g., vitamin ES8H9) or not.

datasets in the short timeframe condition was done to permit a within-subjects compari-
son for increased power for this hard-to-run and expensive study while reducing the like-
lihood that subjects were aware that one of the short timeframe datasets was the same as
the long timeframe dataset. The short timeframe dataset that matched the long timeframe
dataset was randomly assigned to appear either on Day 1 or 25. Of the two short timeframe
tasks on Days 1 and 25, one was contingent (generative or preventive) and the other was
noncontingent (outcome density or A-cell). Table 2 gives an example of the design for one
participant.

2.2.1. Cover stories

Since subjects learned about five cause—effect relations, we created five “contexts” and
cover stories so that each task was viewed as a separate learning task. In each cover story, it
was plausible for the cause to either improve or worsen the effect.

Out of caution with this new and resource-intensive paradigm, we manipulated two aspects
of the cover stories: authenticity of the cause (authentic vs. novel) and valence of the effect
(positive vs. negative). Typical causal learning paradigms use novel causes (e.g., the effect
of Vitamin E8H9 on productivity) to minimize the influence of prior beliefs. However, our
overall goal for this study was to increase the external validity (primarily in terms of the time-
frame but also in terms of feeling real more generally) and were worried that participants in
the long timeframe condition might perform poorly with novel causes (Mutter & Plumlee,
2009). Thus, we decided to use both authentic and novel cover stories (see Table 3 for the
authentic cover stories). In the novel cause condition, the causes involved taking a hypotheti-
cal vitamin or not.

Most effects have an implicit valence of being good (e.g., flower blooming; Spellman,
1996) or bad (e.g., presence/absence of a headache; Liljeholm & Cheng, 2007). Furthermore,
valence can lead to stronger judgments about illusory (Bott & Meiser, 2020; Mullen & John-
son, 1990) and real correlations (Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001; Ohman



C. L. Willett, B. M. Rottman/ Cognitive Science 45 (2021) 7 of 25

& Mineka, 2001; Rozin & Royzman, 2001). For generality, we used both negative and posi-
tive valence. The absence of the effect was always described as “normal.” The presence of the
effect was described as either very good or very bad (Table 3). We coded the causal strength
judgments so positive causal strength always means a positive correlation between the pres-
ence of the cause and the presence of the effect.

We assigned the same valence and authenticity conditions to the matched short and long
timeframe datasets. Of the four short timeframe conditions, two had one version and two had
the other version for both the valence and authenticity manipulations (Table 2).

The valence and authenticity manipulations were intended mainly for exploratory and
counterbalancing purposes. We found no systematic effects of authenticity or valence and
report these results in the supplement.

2.3. Procedure

2.3.1. Overall procedure

The study was run on a website created with our PsychCloud.org framework (Rottman,
2019), and participants used their personal smartphones. The procedure for the short and long
timeframe tasks were identical, except that there was one trial per day in the long timeframe
condition and the trials were back-to-back in the short timeframe condition. On Day 1 of
the study, participants completed two short timeframe tasks and began Day 1 of the long
timeframe task.

The long timeframe task occurred on Days 1-24. Participants received automated text-
message reminders at 10:00 a.m., 3:00 p.m., and 8:00 p.m. to complete the trial. They stopped
receiving reminders if they had already participated that day. Participants were told that if
they missed more than 3 days, the study would be terminated and that they would not be paid;
464 (97%) completed the study. On any given day, 81% participated before the 3:00 p.m.
reminder, 95% before the 8:00 p.m. reminder, and 98% by midnight. For subjects who failed
to participate on 1 (13%), 2 (5%), or 3 days (2%), the subsequent trials were automatically
pushed back to the appropriate number of days so that they experienced all 24 trials.

They returned to the lab on day 25 to answer questions about the long timeframe task,
complete the remaining two short timeframe tasks, and receive payment. Of the 413 subjects
in the final analyses, 83% returned to the lab the day after completing Trial 24. Sometimes
participants returned to the lab on the same day as Trial 24 (13%), or 2 (2%), 3 (1%), or 4
(0.2%) days after Trial 24, depending on the number of missed days and their availability.

In sum, the long timeframe study protocol of one trial per day for 24 days, with assessments
on Day 25, was followed with high fidelity.

2.3.2. Within a trial

Each trial proceeded similarly to the following example (Fig. 1). In this example, subjects
were asked to judge whether taking Vitamin E8H9 during their lunch break improves or
worsens or has no influence on their mood, based on the hypothetical data presented to them
(not participants’ real-life experiences).
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Step 1 Step 2 Step 3 Step 4 Step 5
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& @ hips//leamningd.. [ i & @ hips//leamningd.. [ i ty H & @ htps/leamningd.. [} htips /learningd... @ 3

Day 1 of 24 Day 1 of 24 Day 1 of 24 Day 1 of 24

[~

‘ Predict whether or not
This is the scene from Today you did take you were in a Correct! You were in Take a few seconds
your lunch break. Vitamin E8H9. very happy mood: aNormal Mood. to study the entire
scene.
O Vitamin E8H9 O Very Happy Mood O Very Happy Mood

O No Vitamin E8H9 O Normal Mood O Normal Mood

Figure 1. Screenshots depicting one trial. Text has been simplified for visibility.

In step 1, subjects were shown a contextual image and description for 3 seconds. In step
2, an icon and text appeared to show the presence or absence of the cause, and participants
confirmed the state of the cause. In step 3, they predicted the effect as present or absent.
In step 4, they received feedback, saw an icon representing the true state of the effect, and
verified the state of the effect. In step 5, they were instructed to study the scene for 4 seconds.

At the end of a trial in the short timeframe condition, subjects moved on to the next trial. In
the long timeframe condition, subjects were told that their task was over and to come back to
the website the following day. In both the short and long timeframe conditions, participants
were unable to access a trial after completing it; they could not go back to see what happened
on a previous trial/day at any point during the study.

2.4. Dependent variables

2.4.1. Causal strength

Before trials 9, 17, and after trial 24, participants answered whether the cause (Vita-
min E8H9) “improves or worsens or has no influence” on the effect (mood). If partici-
pants said the cause had no influence, they were assigned a causal judgment of 0. If they
responded “improve” (+1) or “worsen” (—1), they answered “How strongly does [the cause]
[improve/worsen] [the effect]?” on a scale of 1 (very weak) to 10 (very strong). These two
questions were multiplied together and divided by 10 to produce a causal strength rating from
—1 (negative relation between cause and effect) to 41 (positive relation between cause and
effect).

2.4.2. Frequency judgments

Before trials 5, 13, 21, and after the causal strength judgment on trial 24, participants
recalled how often they experienced four types of events (each combination of cause and
effect as present or absent) using the following three questions. First, they recalled how many
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times the cause was present out of the trials that had been seen (e.g., ““You have experienced 24
days. Out of these 24 days, how many days did you take Vitamin ESH9?7”"). The participant’s
response was piped into two follow-up questions: “Of the [14] days you did take Vitamin
E8H9, how many days were you in a very happy mood?” and “Of the [10] days you did not
take Vitamin ESH9, how many days were you in a very happy mood?”

2.4.3. Memory task

After the frequency judgments, participants completed a three-part memory task. First,
in the recognition memory task, they were asked to choose which of two images they saw
during the learning task (one image they had previously seen and a lure image). Participants
were then given feedback about the actual image they saw during the learning task. Second,
in the episodic memory task, participants recalled whether the cause and effect were present
or absent for the image that they saw during the task. Finally, in the temporal order task,
participants used a slider to report the approximate trial (1-24) during which the scene
occurred. Only the results from the episodic memory task are reported in the manuscript.

3. Results

The data and analysis scripts are available at https://osf.io/hmzvn.

3.1. Analysis plan

We analyzed three measures of participants’ judgments for the strength of the relation
between the cause and effect at the end of learning: the causal strength question, the trial-
by-trial predictions, and the frequency judgments (Fig. 2). We converted the predictions and
frequency judgments into measures of the strength of the cause—effect relation using the AP
equation.! For predictive strength, we used the predictions from trials 13 to 24 to ensure that
participants had some time to learn the cause—effect relation.

We only analyzed data from the matched short and long timeframe conditions so that we
could do within-subject tests. Tests were conducted separately for the generative (N = 99),
preventive (N = 104), A-cell (N = 106), and outcome density (N = 104) conditions.

Participants were randomly assigned to complete the matched short condition before (on
Day 1) or after the long condition (on Day 25). To analyze for possible order effects, in the
short timeframe condition, we compared participants who did the short timeframe task on Day
1 versus Day 25. We did the same analysis for the long timeframe condition. This resulted in
24 t-tests; one for each of the two timeframes, three measures, and four datasets. There was
only one significant result (see the Appendix for all results). In the short timeframe, predictive
strength judgments for the preventive dataset were significantly stronger if learned after (M =
—0.57, SD = 0.37) compared to before (M = —0.38, SD = 0.43) the long task, #(102) = 2.37,
p = .020, d = 0.46. Because only one of the 24 r-tests was significant, we concluded that
there was no reliable evidence of systematic order effects and followed our intended analysis
plan.
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Figure 2. The box plot shows the 25th, median, and 75th percentiles, and notches represent the 95% CI of the
median. Individual observations (N = 413) were plotted with horizontal jitter. Markers above each column indicate
Bayes Factor evidence for the value versus zero. Markers above the horizontal lines indicate Bayes Factor evidence
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Table 4
Results for generative and preventive conditions
t-test Bayes factor Wilcoxon test

t )4 d CIlower CI upper BF % P
Generative (N = 99)
Long versus 0
Causal 11.53  <.001 1.18 0.39 0.55 1.84 x 107 3.01 x 10° <.001
Frequency 1297 <.001 1.30 0.28 037 7.79 x 10" 441 x 10° <.001
Predictive 1237 <.001 1.24 0.46 0.63 4.67 x 10" 4.18 x 10°  <.001
Short versus 0
Causal 1143 <.001 1.15 0.37 0.53 525x 10" 333 x10° <.001
Frequency 14.61 <.001 1.47 0.26 0.34 1.58 x 10® 440 x 10° <.001
Predictive 11.65 <.001 1.17 0.44 0.62 151 x 107 4.36 x 10° <.001
Long versus Short
Causal —0.38 707 —0.05 —0.12 0.08 0.12 1.36 x 10° .585
Frequency —1.04 301 —-0.13 —0.09 0.03 0.19 2.00 x 10° 299
Predictive —0.29 769 —0.04 —0.13 0.09 0.12 1.87 x 10° 705
Preventive (N = 104)
Long versus 0
Causal -724 <001 -071 —042 —024 1.10x10% 270 x 10> <.001
Frequency —11.04 <.001 -1.08 —0.37 —0.26 147 x 10'® 299 x 10> <.001
Predictive —-944 <001 -093 —055 —036 5.04x 102 427 x 10> <.001
Short versus 0
Causal -921 <.001 -090 —043 —028 1.57x 102 203 x 10> <.001
Frequency —13.75 <.001 —-135 —035 —026 826x10*" 141 x 10> <.001
Predictive —12.15 <.001 —-1.19 —056 —0.41 3.58x 10" 2.84 x 10> <.001
Long versus Short
Causal —0.35 728 —-0.05 —0.14 0.09 0.12 1.69 x 103 954
Frequency 0.25 .801 0.03 —0.06 0.07 0.11 2.68 x 10° 718
Predictive —0.62 538 —0.07 —0.14 0.07 0.13 2.34 x 10° .628

Note: Long versus 0 and Short versus 0 are statistical tests to see if the mean or median is different from zero.
The long versus Short comparison subtracts long from short, so positive numbers mean that short is more positive
and negative means that short is more negative. CI = 95% confidence intervals.

The inferential statistics for the causal, prediction, and frequency strengths measures appear
in Tables 4 and 5. For each dataset and measure of causal strength, we conducted two-sided
one-sample 7-tests against zero to see if short and long timeframe strength judgments were sig-
nificantly different from zero. Next, we conducted two-sided paired samples #-tests to assess
whether there were significant differences between short and long timeframe judgments for
each dataset. We also calculated Bayes factors (BF) for each #-test using the default parame-
ters and priors in the BF package (Morey & Rouder, 2018) in R Core Team (2020) including
the default sqrt(2)/2 prior for the rscale parameter. A BF > 1 is support for the alternative
hypothesis and a BF < 1 is support for the null. We used the descriptive labels to summa-
rize the BFs suggested by Lee and Wagenmakers (2014). Because we observed non-normal
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Table 5
Results for A-cell and outcome density conditions
t-test Bayes factor Wilcoxon test

t P d Cllower CI upper BF \%4 p
A-cell (N =106)
Long versus 0
Causal 6.24  <.001 0.61 0.17 033 1.15x10° 1.74 x 10° <.001
Frequency 1.96 052 0.19 0.00 0.09 0.68 2.57 x 10° .035
Predictive 379 <.001 0.37 0.09 0.28 7.56 x 10"  3.54 x 10°  <.001
Short versus 0
Causal 7.12 <.001 0.69 0.16 0.28 6.46 x 107 127 x 10°  <.001
Frequency 2.88 .005 0.28 0.02 0.09 531 3.12 x 103 .002
Predictive 375 <.001 0.36 0.07 022 6.74 x 100 347 x 10°  <.001
Long versus Short
Causal —0.71 477 —-0.09 —-0.13 0.06 0.14 1.39 x 10° 364
Frequency 0.20 .845 0.02 —0.05 0.06 0.11 248 x 10° .985
Predictive —0.72 469 —0.08 —0.14 0.06 0.14 2.30 x 10° .161

Outcome Density (N=104, N=103 for frequency strength)

Long versus 0

Causal 423  <.001 0.41 0.09 024 341 x10*> 925x 10> <.001
Frequency 2.53 013 0.25 0.01 0.10 2.23 2.59 x 103 .017
Predictive 2.13 036 0.21 0.01 0.18 0.94 2.73 x 10} .036
Short versus 0

Causal 2.73 .008 0.27 0.02 0.13  3.60 3.17 x 102 .010
Frequency 0.36 718 0.04 —0.03 0.04 0.12 2.02 x 103 535
Predictive —2.24 028 —-022 —-0.16 —0.01 1.17 1.48 x 10° .031
Long versus Short

Causal -1.72 089 —-025 —0.18 0.01 045 6.44 x 102 .068
Frequency -1.97 052 —-026 —0.10 0.00 0.70 1.87 x 10° .050
Predictive -3.60 <.001 -042 —028 —008 4.22x 10" 1.57 x 10° .001

Note: Long versus O presents statistical tests to see if the mean or median is different from zero. The long
versus short comparison subtracts long from short, so positive numbers mean that short is more positive and
negative means that short is more negative.

distributions in the measures of strength, we also conducted nonparametric Wilcoxon signed-
rank tests. The conclusions were very similar across the z-tests, BFs, and Wilcoxon tests.

3.2. Generative and preventive datasets

Participants clearly learned the generative and preventive relations; the judgments were
positive for the generative dataset and negative for the preventive dataset. The statistical tests
against zero for both the short and long timeframe were significant and BFs were very strong.
Furthermore, the tests comparing the short versus long timeframe were all nonsignificant,
and most of the BFs were roughly around 0.12 (about 1:8 in favor of the null hypothesis) and
one was 0.19 (about 1:5 in favor of the null). In sum, participants exhibited nearly equivalent
ability to learn positive and negative relations in short and long timeframes.
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3.3. Illusory correlation datasets

3.3.1. A-cell dataset

For the causal and predictive strength measures, the judgments for the A-cell datasets were
significantly positive for both the short and long timeframes. The BFs were quite strong,
especially for the causal strength judgments, suggesting that participants exhibited illusory
correlations. The frequency strength judgments were also positive but the BFs were weaker,
especially in the long timeframe, suggesting that different ways to measure illusory correla-
tions may make a difference.

Most importantly, however, the comparisons between short and long timeframes were non-
significant for each of the three measures, and the BFs were in the range of 0.11-0.14 (roughly
1:9 or 1:7 in favor of the null). Thus, participants exhibited similar patterns of illusory corre-
lations in the short and long timeframe conditions.

3.3.2. Outcome density

The judgments for the outcome density dataset were somewhat less clear. Outcome den-
sity datasets often produce positive illusory correlations, though typically not as strongly as
A-cell datasets (Blanco et al., 2013). In the long timeframe condition, there were positive
illusory correlations for each measure according to p-values; however, the BFs varied greatly.
In the short timeframe condition, some of the measures revealed positive illusory correlations
and some were actually negative according to significance testing. The BFs were not at all
convincing.

When comparing the short versus the long timeframe conditions, the causal and frequency
strength measures were not significantly different (or marginally significant) and the BFs
were weak. However, the predictive strength measure was significantly different; the long
timeframe condition produced a positive illusory correlation, but the short timeframe condi-
tion produced a negative illusory correlation (inconsistent with prior rapid trial-by-trial stud-
ies, e.g., Blanco et al., 2013). For this reason, and since there was only one significant and
one marginal difference between long and short timeframes, we believe that these differences
between short versus long timeframe should be interpreted skeptically.

3.4. Judgments during learning

Fig. 3 shows learning curves using the three dependent measures. The causal and frequency
strength measures are from participants’ interim judgments during learning. For predictive
strength, participants predicted the presence or absence of the effect on each trial. In Fig. 3,
we calculated predictive strength using the predictions from trials 1 to 8 for the trial 8 measure,
9 to 16 for the trial 16 measure, and 17 to 24 for the trial 24 measure. All three measures have
some missing data. There is a bit of missing data for the interim causal strength judgments
due to server errors. The frequency and predictive strength have considerable missing data
due to being impossible to calculate with a divide by zero error, especially early on.

We did not conduct quantitative analyses for these measures out of concern for inflated
Type I error due to the large number of potential comparisons. Qualitatively, the three mea-
sures of strength over time are quite similar between the short and long timeframe conditions.
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Figure 3. Measures of strength over time for each dataset in the short and long timeframe conditions. The long
and short timeframes are separated a bit on the X-axis to reduce over-plotting. Error bars represent 95% CI of the
mean. Note that frequency strength was measured at different times than causal strength. We reported predictive
strength for the same times as causal strength.

Fig. 3 also shows that substantial learning had already occurred by trial 8 for causal and
predictive strengths: The generative and preventive conditions were already separated. The
frequency strength panel suggests that participants may have had a bit of difficulty remem-
bering the prior evidence at trial 4 in the long timeframe condition; the judgments were more
extreme for the generative and preventive datasets in the short than long timeframe. However,
by trial 12, frequency strength in the short and long timeframes looks similar.

3.5. Episodic memories

In the episodic memory test, participants were shown an image from the study and recalled
whether the cause and effect were present or absent, so the chance performance for getting



C. L. Willett, B. M. Rottman/ Cognitive Science 45 (2021) 15 of 25

Table 6
Results for episodic memories collapsed across all datasets, N=412

t-test Bayes Factor
Comparison t )4 d CI lower CI upper BF
Long versus 0.25 8.42 <.001 0.41 0.28 0.30 7.30 x 102
Short versus 0.25 15.18 <.001 0.75 0.33 0.35 1.68 x 1038
Long versus Short* 6.09 <.001 0.38 0.03 0.06 1.06 x 10°

*This comparison subtracts long from short, so positive numbers mean that short is more accurate. CI = 95%
confidence intervals.

both correct was 0.25. We analyzed all four dataset conditions together. For each participant,
we calculated an accuracy score out of the 24 trials for both the short and long timeframe
conditions. One participant was excluded from analyses due to a programming error. Thus,
these analyses include 412 participants.

Two-sided one-sample #-tests revealed that participants’ episodic memories were signifi-
cantly better than chance in both the short (M = 0.34, SD = 0.12) and long (M = 0.29, SD
= 0.11) timeframes (Table 6), though still poor in an absolute sense. The difference between
accuracy scores in the short and long timeframe conditions was significant, suggesting that
participants had stronger episodic memories in the standard rapid trial-by-trial paradigm.

4. Discussion

Although standard trial-by-trial paradigms present cue-outcome trials in rapid succession,
most real-world experiences require learning from events that are spread out over longer peri-
ods of time. We found that when participants observed one trial per day for 24 days, they were
capable of learning contingent cause—effect relations, but they exhibited illusory correlations
for noncontingent datasets. Critically, we found few differences between the short and long
timeframe conditions, with most BF roughly 8:1 in support of the null. We observed some
inconsistencies for the outcome density dataset, but these were due to judgments in the short
timeframe condition that were inconsistent with prior research.

From a practical perspective, this research suggests that in our everyday lives, humans may
be able to detect simple cause—effect relations when they exist; however, we will likely also
infer illusory correlations.

From a methodological perspective, this research provides an optimistic initial outlook on
the validity of the trial-by-trial paradigm as a simulation of causal learning that occurs across
longer periods of time. Assessing the external validity of this paradigm is important given
that it has been used in hundreds of studies on causal learning and many thousands of studies
when including all sorts of probability learning tasks and other related topics.

From a theoretical perspective, we find it striking that there were so few differences in
learning across the short and long timeframe conditions. The robust learning in the long time-
frame condition is surprising considering that participants completed this condition outside of
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the lab and likely participated with many distractions and interruptions as would be expected
when learning from experience in everyday life.

4.1. Implications for theories of causal learning

4.1.1. Sequential updating models

Though studies have manipulated the intertrial-interval (ITI) within human (Msetfi, Mur-
phy, Simpson, & Kornbrot, 2005) and animal learning paradigms (Carranza-Jasso, Urcelay,
Nieto, & Sanchez-Carrasco, 2014; Holland & Morell, 1996), the maximum ITIs have been
in the order of minutes. For this reason, empirical research does not provide much guidance
about the impact of ITI on learning if the trials are spaced out once per day.

Theoretically, sequential updating models, including reinforcement and associative learn-
ing theories (e.g., Rescorla & Wagner, 1972), have very minimal memory demands, which
could facilitate learning over long timeframes. Our failure to find differences between short
and long timeframes is generally consistent with these classes of models.

4.1.2. Rule-based models

Rule-based models are the dominant models of how people assess causal relations (Cheng,
1997; Griffiths & Tenenbaum, 2005; Hattori & Oaksford, 2007). These models assume that
individuals judge the strength of causal relations from remembered frequencies of the four
types of events (each combination of the cue and outcome as present/absent). Therefore,
accurate judgments would require accurate tallies of the four types of events.

We found that there were few differences between the causal strength judgments across
the short versus long timeframes and also that there were few differences between the fre-
quency judgments (tallies). It is possible that learning four tallies is simple enough that it can
be performed robustly over long timeframes and that a rule-based approach was used to esti-
mate causal strength. Another possibility is that participants engaged in a sequential updating
learning process and recreated the tallies from learned associations.

4.1.3. Uneven cell weighting in attention and memory

People focus most on trials when the cause and effect are present and least on trials when
the cause and effect are absent (e.g., Kao & Wasserman, 1993). Uneven cell weighting is one
of the primary explanations for illusory correlations and is also exaggerated under increased
cognitive load (Kao & Wasserman, 1993; Shaklee & Mims, 1982). If spreading out the events
over time further taxes memory and attention, by analogy, one might expect a stronger A-
cell bias in long timeframes, which would lead to more positive judgments in all four long
timeframe conditions. Although we did find illusory correlations, we did not find that the
judgments were more positive in the long timeframe condition compared to the short.

4.1.4. Working memory vs. reinforcement learning as alternative learning systems

Recently there have been some advances in research attempting to disentangle the working
memory (WM) and reinforcement learning (RL) systems in an instrumental reinforcement
learning paradigm (A. G. Collins, 2018; A. G. Collins & Frank, 2012). A key finding was that
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when participants had to learn which action to take for each of 3 or 6 cues, they were more
successful with 3 cues if tested immediately after learning and more successful with 6 cues
if tested after a delay (when WM could not be used). This finding and additional modeling
suggested that WM and RL both operate in experience-based learning tasks, and to some
extent the learner can dynamically trade-off between the two. In the current study, which
had only one cue, presumably WM was strongly engaged in the short timeframe. Because
participants could not use WM in the long timeframe, either RL or another form of long-term
form of memory must have been used. Conducting similar studies in a long timeframe may
help reveal whether similar tradeoffs exist and the potential for multiple memory systems in
long timeframe learning.

4.2. Implications for broader research

4.2.1. Episodic memory

Recently, the possibility has been raised that participants in trial-by-trial learning tasks store
and use episodic memories of learning events (Bornstein & Norman, 2017; Bornstein, Khaw,
Shohamy, & Daw, 2017) as opposed to learning an association between the cause and effect or
tallies of the four events. We found that the accuracy of participants’ episodic memories (29—
34%) was significantly but only slightly above chance (25%), and therefore cannot explain the
accurate causal judgments observed in the generative and preventive conditions. Furthermore,
there were significant timeframe differences for episodic memories but few differences for
causal judgments. Thus, our results suggest that participants were probably not primarily
using episodic memories for assessing the strength of the cause—effect relation or for making
predictions of the effect from the cause. However, it is possible that participants remembered
a few recent learning experiences that had an impact on their assessments.

4.2.2. Timescales of learning

In associative learning, there is a debate about “timescale independence” or “invariance”
(Brown, Neath, & Chater, 2007; Gallistel & Gibbon, 2000; Kello et al., 2010), in which learn-
ing phenomena tend to replicate if the sequence is stretched or compressed. In memory, there
are debates about the similarities and differences between short- versus long-term memory
(Cowan, 2008) and whether memories across short and long timescales can be modeled with
the same forgetting curves (Averell & Heathcote, 2011; Wixted & Ebbesen, 1991). These
debates are complex and technical, and though the current study was not designed specifi-
cally to address them, the lack of differences speaks to the similarity of learning over short
and long timeframes.

4.2.3. Personal semantics

A relatively new topic in memory research is the idea of “personal semantics”—declarative
memories about the self that fall in-between episodic memories of events and semantic
memories of facts. Many autobiographical memories involve repeated events (Renoult,
Davidson, Palombo, Moscovitch, & Levine, 2012, 2016). The sorts of memories studied
in the current research take autobiographical memories a step further because they involve
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memories of repeated events involving both a cause (e.g., “I often drink coffee”) and effect
(e.g., “I often sleep poorly”) and memories about the relationship between the two (e.g.,
“Drinking coffee impairs my sleep”). Insofar as repeated events are believed to be funda-
mental to the autobiographical memories and beliefs about oneself, the current paradigm is
important because it provides a way to empirically study the accuracy of repeated autobio-
graphical memories in a more realistic timeframe.

4.3. Limitations and future directions

The current research was intended as a first step toward generalizing the standard short
timeframe trial-by-trial paradigm into a long timeframe. In order to make the long timeframe
highly comparable to the short timeframe, we intentionally sought a compromise between
internal and external validity. Specifically, we manipulated the length of time between the
trials and kept everything else as similar to prior studies as possible; we felt that this was the
first most important step toward understanding learning from experience in long timeframes.

We are already modifying the paradigm to test causal learning in progressively more
authentic ways. In particular, we are studying whether people can learn more complex cause-
effect relations, such as when there are two causes instead of just one and when there are con-
siderable delays between the cause and the effect. We are also studying situations in which
a cause is not used for a period of time and then starts to get used for a period of time (e.g.,
initially not using a medication and then starting to use a medication for multiple days in a
row) rather than the random order of the cause being present or absent in the current study;
this alternative task may be harder because it could require remembering back to the prior
period of time when the cause was not used.

However, we acknowledge that the long timeframe paradigm we used is still artificial in a
number of different ways, some of which we mention here. We hope that this list encourages
other researchers from a variety of sub-fields to take up these questions.

4.3.1. Explicit versus implicit learning

One limitation with almost every causal learning paradigm, including our smartphone
paradigm, is that participants are aware of the goal—to learn causal relations—and the smart-
phone task likely triggers engagement with this goal each day. In the real world, there may be
situations in which one has a strong goal to learn and assess a causal relation; for example,
when eliminating a food from one’s diet to see if it makes them feel better, or when starting a
medicine. However, there are also many situations in which one does not initially have a goal,
such as encountering a problem (e.g., poor sleep, feeling sick) and then trying to figure out
what may have caused the problem. Or there may even be situations that are entirely implicit.
Our smartphone paradigm best simulates the most explicit form of learning.

4.3.2. The phone as a protected learning context

Another challenge with using a smartphone to present the materials to participants is that
it may serve as its own unique learning context. One of the challenges in learning is the
credit assignment problem—identifying which of a practically infinite number of potential



C. L. Willett, B. M. Rottman/ Cognitive Science 45 (2021) 19 of 25

causes actually influence an effect (Denniston, Savastano, Blaisdell, & Miller, 2003; Gallistel,
Craig, & Shahan, 2019; Noonan, Chau, Rushworth, & Fellows, 2017; Staddon & Zhang,
2016; Sutton, 1984). Perhaps one limitation of the current study is that participants are able
to ignore anything happening in their normal lives and only focus on the single cause and
single effect presented on the phone. Thus, our study does not address the credit assignment
problem; this is something we are currently studying. At the same time, we note that almost all
short timeframe studies are explicitly designed with novel stimuli and a novel context (the lab
or the experimental application on the computer) to accomplish the same goal of protecting
the study from outside influences. Furthermore, if it is true that the phone serves as a protected
environment for learning in the long timeframe and that within this environment learning
occurs unimpeded relative to the short timeframe; in our opinion, this is an important finding
in its own right. In theory, it should be entirely possible for events outside the phone to affect
learning that occurs within the context of the phone to some extent (e.g., through interference
or simply distraction). Furthermore, the length of time between trials should impact memory
decay regardless of the phone context. The fact that learning was so similar in the long and
short timeframes highlights the important role of attention in facilitating learning and it also
demonstrates that the length of the task does not inherently impair learning.

4.3.3. Causal strength versus causal structure

One of the most major developments in research on causation in the past two decades has
been the shift from only focusing how people learn causal strength toward how people learn
the causal structure among multiple variables (Bramley, Gerstenberg, Mayrhofer, & Lagnado,
2018; Coenen, Rehder, & Gureckis, 2015; Davis, Bramley, & Rehder, 2020; Rothe, Deverett,
Mayrhofer, & Kemp, 2018; Rottman & Keil, 2012; Steyvers, Tenenbaum, Wagenmakers,
& Blum, 2003). One reason that this is vitally important is because it helps to distinguish
truly causal versus associative representations (though see Fernando (2013) for an associa-
tive learning model of causal structure). Although associative representations have very low
memory demands, inferring causal structures with causal representations require considerably
more memory and reasoning demands. Thus, another interesting question for future research
is the extent to which people can learn causal structure in more realistic contexts.

4.3.4. Definition of a trial

Another limitation of this paradigm, and trial-by-trial paradigms generally, is that the mean-
ing of a “trial” is very hard to define let alone justify from a naturalistic learning perspec-
tive (Gallistel, 2021; Gallistel & Gibbon, 2000). For example, one way in which the “trial”
paradigm is artificial is that absences are more salient than usual; in the real world, not taking
medicine and not experiencing pain are typically less salient than taking medicine and feel-
ing pain. In most causal learning paradigms, however, the absence and presence of the cause
are explicitly stated and therefore made artificially salient. Another related concern is that
many real-world phenomena are not punctate events that happen at a brief moment in time
but instead may persist or fluctuate in intensity over periods and grow or recede in awareness
over time (e.g., pain, mood; Davis et al., 2020; Soo & Rottman, 2015. Studying causation
with other paradigms over long timeframes will help make the research more realistic.
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4.3.5. Repeated judgments

One aspect of the current design is that on certain learning trials, participants were
prompted to make causal judgments or to report their memories. We did this in order to have
interim measures of learning aside from the predictions. Prior research has varied widely in
the practices used. The majority of studies on causal learning simply ask for judgments at
the end of learning. Some have asked for judgments a few times during learning, and a few
have asked for judgments on every trial (Soo & Rottman, 2015; Van Hamme & Wasserman,
1994). There is some evidence that asking for judgments repeatedly may lead participants to
report only what has happened on the most recent experiences since the last judgment (Collins
& Shanks, 2002; Hogarth & Einhorn, 1992; Marsh & Ahn, 2006). It is possible that asking
for interim judgments helped improve learning or modified learning in some way. That said,
given that interim judgments were asked for both the long and short timeframe conditions,
it seems unlikely that such judgments are responsible for the essentially equal performance
in the two conditions; it would have needed to perfectly balance out any other differences
between the short versus long timeframe conditions.

4.3.6. Within- versus between-subjects design

A weakness of our study is that it used an atypical within-subjects design, with the long
timeframe task occurring in between the short timeframe tasks on the first and last day.
We implemented the within-subjects comparison to increase power and because a between-
subjects design is very expensive (participants in the short and long conditions would need to
be paid the same amount). That said, researchers who want to study long timeframe learning
may consider doing a standard counterbalanced design or may consider only studying the
long timeframe condition instead of comparing long versus short timeframe learning.

4.4. Potential for mobile phones and wearables for ecological momentary experiments

We believe that mobile phones, smart watches, and other wearable technologies provide
valuable but largely untapped opportunities for researchers to conduct experiments that
are embedded in everyday life. For many years, various technologies have facilitated the
collection of survey data at different times of day using ecological momentary assessment,
experience sampling, and intensive longitudinal data in order to prevent recall bias and
other problems with retrospective reports (e.g., Shiffman, Stone, & Hufford, 2008). The
omnipresence of smartphones is now facilitating ecological momentary interventions—
interventions meant to prompt behavior change around mental and behavioral health (Heron
& Smyth, 2010; Marcolino et al., 2018; Nahum-Shani et al., 2018; see also just-in-time active
interventions and mobile health (mhealth)).

The current research is a departure from these methods in that it involves embedding what
would otherwise be a normal psychology experiment, with high degrees of manipulation and
control of stimuli, into participants’ lives; we call this approach “ecological momentary exper-
iments" (EME). Though such experiments are hard to program and conduct, we believe that
they are valuable because a wide variety of learning phenomena that are typically studied in
short timeframe studies translate best to phenomena that play out over considerably longer
periods of time in real life. Thus, we believe that this EME paradigm can be adapted to
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studying many phenomena studied by cognitive scientists (e.g., probability learning, second
language learning, memory, decision making, sleep, etc.).

In our study, we used a custom-designed program based on our PsychCloud.org frame-
work and hosted on Google’s app engine. Recently, a number of other tools have become
available for both presenting stimuli and asking questions (Mack, Harding, Davies, & Ward,
2019; Shevchenko, Kuhlmann, & Reips, 2021; Stieger, Lewetz, & Reips, 2018). We hope
that as these technologies become more powerful and easier to use, researchers can exploit
the possibilities that they open up.

5. Conclusion

The current research is an important step toward generalizing existing learning paradigms
to more real-world settings; it shows that people have similar strengths and weaknesses when
learning simple cause—effect relations in long timeframes as they do in short timeframes.
However, we also raised a number of limitations with the study—there are still many ways in
which real-world causal learning differs from the current paradigm and there are also many
different sorts of real-world causal learning situations. Additionally, our participants were
mostly college students, but older adults with age-related working memory decline exhibit
less accurate causal learning (Mutter & Plumlee, 2009; Mutter, DeCaro, & Plumlee, 2009);
it is uncertain how accurately older adults can perform causal learning over long timeframes.
Given how important causal and statistical learnings are for so many cognitive functions,
additional research is needed to understand the accuracy of these abilities in real-world
environments.
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APPENDIX
Table Al
Tests of order effects
Causal strength Frequency strength Predictive strength
Dataset Length df t p d t p d t P d
Generative ~ Short 97 091 .364 0.18 0.47 .643 0.09 0.29 .774 0.06
Long 97 0.46 .646 0.09 0.14 .887 0.03 —1.33 .185 -0.27
Preventive  Short 102 1.01 .317 0.20 0.71 .477 0.14 2.37 .020* 0.46
Long 102 0.75 .457 0.15 1.18 .241 0.23 0.18 .856 0.04
A-cell Short 104 1.66 .101 0.32 1.54 .126 0.30 1.43 .156 0.28
Long 104 1.59 .116 0.31 —1.30 .196 —-0.25 —-0.20 .842 —0.04
Outcome Short 102 0.75 .458 0.15 —-0.44 .660 —-0.09 —-0.27 .790 —0.05
Density Long 102 —0.25 .803 —0.05 —1.34 .183 —-0.26 —0.67 .506 —0.13

*p < .05. Positive numbers indicate more positive judgments if the task was completed first than if the task was
completed second.
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